top of page
image.png
The New National Library, Jerusalem

Publications

 For the full list see Google Scholar

Super Resolution Microscopy:

Astratov, V. N.; Sahel, Y. B.; Eldar, Y. C.; ... Roadmap on Label‐Free Super‐Resolution Imaging (Laser Photonics Rev. 17 (12)/2023). Laser &Photonics … 2023. https://doi.org/10.1002/lpor.202370055

Tzang, O.; Hershkovitz, D.; Cheshnovsky, O. Label-Free Super-Resolution Microscopy by Nonlinear Photo-Modulated Reflectivity. Label-Free Super-Resolution … 2019. https://doi.org/10.1007/978-3-030-21722-8_11 

Tzang, O.; Hershkovitz, D.; Nagler, A.; ... Pure Sinusoidal Photo-Modulation Using an Acousto-Optic Modulator. Review of Scientific 2018 123102-1-7…. 2018. https://doi.org/10.1063/1.5020796

Wagner, O.; Cheshnovsky, O.; Roichman, Y. A New Paradigm for Parallelized STED Microscopy. arXiv Prepr. arXiv1504.05017 2015.

Tzang, O.; Pevzner, A.; E. Marvel, R.; F. Haglund, R.; Cheshnovsky, O. Super-Resolution in Label-Free Photomodulated Reflectivity. Nano Lett. 2015, 15 (2), 1362–1367. https://doi.org/10.1021/nl504640e

Tzang, O.; Azoury, D.; Cheshnovsky, O. Super Resolution Methodology Based on Temperature Dependent Raman Scattering. Opt. Express 2015, 23 (14). https://doi.org/10.1364/OE.23.017929

Tzang, O.; Cheshnovsky, O. New Modes in Label-Free Super Resolution Based on Photo-Modulated Reflectivity. Opt. Express 2015, 23 (16). https://doi.org/10.1364/OE.23.020926

Spectroscopy and Dynamics of Nanostructures:

Schwarz, A.; Alon-Yehezkel, H.; Levi, A.; ... Thiol-Based Defect Healing of WSe2 and WS2. npj 2D Materials and …. nature.com 2023. https://doi.org/10.1038/s41699-023-00421-0

Hershkovitz, D.; Arieli, U.; Sinha, S. S.; Cheshnovsky, O.; Suchowski, H. Second-Order Photoinduced Reflectivity for Retrieval of the Dynamics in Plasmonic Nanostructures. Nano Lett. 2022, 22 (15), 6179–6185.

Vinegrad, E.; Marchak, D.; Glozman, D.; Cheshnovsky, O.; Selzer, Y. Probing the Dynamic Fluctuations of Bismuth Nanoparticles by Thermovoltage Measurements. J. Phys. Chem. C 2016, 120 (33), 18925–18930. https://doi.org/10.1021/acs.jpcc.6b06101.

Kuhn, S.; Asenbaum, P.; Kosloff, A.; Sclafani, M.; Stickler, B. A.; Nimmrichter, S.; Hornberger, K.; Cheshnovsky, O.; Patolsky, F.; Arndt, M. Cavity-Assisted Manipulation of Freely Rotating Silicon Nanorods in High Vacuum. Nano Lett. 2015, 15 (8). https://doi.org/10.1021/acs.nanolett.5b02302.

Bareket, L.; Waiskopf, N.; Rand, D.; Lubin, G.; David-Pur, M.; Ben-Dov, J.; Roy, S.; Eleftheriou, C.; Sernagor, E.; Cheshnovsky, O.; Banin, U.; Hanein, Y. Semiconductor Nanorod-Carbon Nanotube Biomimetic Films for Wire-Free Photostimulation of Blind Retinas. Nano Lett. 2014, 14 (11). https://doi.org/10.1021/nl5034304.

Marchak, D.; Glozman, D.; Vinshtein, Y.; Jarby, S.; Lereah, Y.; Cheshnovsky, O.; Selzer, Y. Large Anisotropic Conductance and Band Gap Fluctuations in Nearly Round-Shape Bismuth Nanoparticles. Nano Lett. 2012, 12 (2). https://doi.org/10.1021/nl204460y.

Marchak, D.; Glozman, D.; Vinshtein, Y.; Jarby, S.; Lereah, Y.; Cheshnovsky, O.; Selzer, Y. Molecular Control of Structural Dynamics and Conductance Switching in Bismuth Nanoparticles. J. Phys. Chem. C 117 (43), 22218–22223. https://doi.org/10.1021/jp312417n.

Flaxer, E.; Sneh, O.; Cheshnovsky, O. Molecular Light Emission Induced by Inelastic Electron Tunneling. Science1993, 262 , 2012–2014. https://doi.org/10.1126/science.262.5142.2012

Raman and dichroism of molecules and nanostructures:

Taieb, A.; Berkovic, G.; Haifler, M.; ... Classification of Tissue Biopsies by Raman Spectroscopy Guided by Quantitative Phase Imaging and Its Application to Bladder Cancer. J. … 2022. https://doi.org/10.1002/jbio.202200009.

Shaus, A.; Sober, B.; Tzang, O.; Ioffe, Z.; Cheshnovsky, O.; Finkelstein, I.; Piasetzky, E. Raman Binary Mapping of Iron Age Ostracon in an Unknown Material Composition and High-Fluorescence Setting—A Proof of Concept. Archaeometry 2019, 61 (2). https://doi.org/10.1111/arcm.12419.

Hananel, U.; Schwartz, G.; Paiss, G.; Arrico, L.; Zinna, F.; ... Time‐resolved Circularly Polarized Luminescence of Eu3+‐based Systems. Chirality 2021. https://doi.org/10.1002/chir.23293.

Vinegrad, E.; Hananel, U.; Markovich, G.; Cheshnovsky, O. Determination of Handedness in a Single Chiral Nanocrystal via Circularly Polarized Luminescence. arXiv. 2018.

Vinegrad, E.; Vestler, D.; Ben-Moshe, A.; Barnea, A. R.; Markovich, G.; Cheshnovsky, O. Circular Dichroism of Single Particles; 2018. https://doi.org/10.1021/acsphotonics.8b00016.

Tzang, O.; Kfir, K.; Flaxer, E.; Cheshnovsky, O.; Einav, S. Detection of Microcalcification in Tissue by Raman Spectroscopy. Cardiovasc. Eng. Technol. 2011, 2 (3). https://doi.org/10.1007/s13239-011-0051-9.

Ioffe, Z.; Shamai, T.; Ophir, A.; Noy, G.; Yutsis, I.; Kfir, K.; Cheshnovsky, O.; Selzer, Y. Detection of Heating in Current-Carrying Molecular Junctions by Raman Scattering. Nat. Nanotechnol. 2008, 3, 727 (12). https://doi.org/10.1038/nnano.2008.304.

Diffraction of Atoms and Molecules:

Luski, A.; Segev, Y.; David, R.; Bitton, O.; Nadler, H.; ... Vortex Beams of Atoms and Molecules. Science (80-. ). 2021. https://doi.org/10.1126/science.abj2451.

Brand, C.; Troyer, S.; Knobloch, C.; ... Single-, Double-, and Triple-Slit Diffraction of Molecular Matter Waves. American Journal of …. pubs.aip.org 2021.

Brand, C.; Monazam, M. R. A.; Mangler, C.; Lilach, Y.; ... The Morphology of Doubly-Clamped Graphene Nanoribbons. 2D … 2021. https://doi.org/10.1088/2053-1583/abe952.

Barnea, A. R.; Cheshnovsky, O.; Even, U. Matter-Wave Diffraction Approaching Limits Predicted by Feynman Path Integrals for Multipath Interference. Phys. Rev. A 2018, 97 (2). https://doi.org/10.1103/PhysRevA.97.023601.

Knobloch, C.; Stickler, B. A.; Brand, C.; Sclafani, M.; Lilach, Y.; Juffmann, T.; Cheshnovsky, O.; Hornberger, K.; Arndt, M. On the Role of the Electric Dipole Moment in the Diffraction of Biomolecules at Nanomechanical Gratings. Fortschritte der Phys. 2017, 65 (6–8). https://doi.org/10.1002/prop.201600025.

Cotter, J. P.; Brand, C.; Knobloch, C.; Lilach, Y.; Cheshnovsky, O.; Arndt, M. In Search of Multipath Interference Using Large Molecules. Sci. Adv. 2017, 3 (8). https://doi.org/10.1126/sciadv.1602478.

Barnea, A. R.; Stickler, B. A.; Cheshnovsky, O.; Hornberger, K.; Even, U. Electrically Controlled Quantum Reflection. Phys. Rev. A 2017, 95 (4). https://doi.org/10.1103/PhysRevA.95.043639.

Brand, C.; Sclafani, M.; Knobloch, C.; ... Matter-Wave Diffraction at the Natural Limit. APS Div. … 2016.

Brand, C.; Fiedler, J.; Juffmann, T.; Sclafani, M.; Knobloch, C.; Scheel, S.; Lilach, Y.; Cheshnovsky, O.; Arndt, M. A Green’s Function Approach to Modeling Molecular Diffraction in the Limit of Ultra-Thin Gratings. Ann. Phys. 2015, 527 (9–10). https://doi.org/10.1002/andp.201500214.

Brand, C.; Sclafani, M.; Knobloch, C.; Lilach, Y.; Juffmann, T.; Kotakoski, J.; Mangler, C.; Winter, A.; Turchanin, A.; Meyer, J.; Cheshnovsky, O.; Arndt, M. An Atomically Thin Matter-Wave Beamsplitter. Nat. Nanotechnol. 2015, 10 (10). https://doi.org/10.1038/nnano.2015.179.

Juffmann, T.; Milic, A.; Müllneritsch, M.; Asenbaum, P.; Tsukernik, A.; Tüxen, J.; Mayor, M.; Cheshnovsky, O.; Arndt, M. Real-Time Single-Molecule Imaging of Quantum Interference. Nat. Nanotechnol. 2012, 7 (5). https://doi.org/10.1038/nnano.2012.34.

 

Nano Technology Tools: 

Kotakoski, J.; Brand, C.; Lilach, Y.; Cheshnovsky, O.; Mangler, C.; Arndt, M.; Meyer, J. C. Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene. Nano Lett. 2015, 15 (9). https://doi.org/10.1021/acs.nanolett.5b02063.

Abrams, Z. R.; Ioffe, Z.; Tsukernik, A.; Cheshnovsky, O.; Hanein, Y. A Complete Scheme for Creating Predefined Networks of Individual Carbon Nanotubes. Nano Lett. 2007, 7 (9). https://doi.org/10.1021/nl071058f.

Karp, G. A.; Ya’Akobovitz, A.; David-Pur, M.; Ioffe, Z.; Cheshnovsky, O.; Krylov, S.; Hanein, Y. Integration of Suspended Carbon Nanotubes into Micro-Fabricated Devices. J. Micromechanics Microengineering 2009, 19 (8). https://doi.org/10.1088/0960-1317/19/8/085021.

Photoelectron Spectroscopy of Mass Selected Clusters (Highlights of Past activity):

Barnett, R.; Giniger, R.; Cheshnovsky, O.; Landman, U. Dielectron Attachment and Hydrogen Evolution Reaction in Water Clusters. J. Phys. Chem. A  (2011) 115 (25), 7378–7391. https://doi.org/10.1021/jp201560n.

Verlet, J. R. R.; Bragg, A. E.; Kammrath, A.; Cheshnovsky, O.; Neumark, D. M. Observation of Large Water-Cluster Anions with Surface-Bound Excess Electrons. Science 2005, 307 (5706), 93–96.

Issendorff, B.; Cheshnovsky, O. Metal to Insulator Transitions in Clusters. Annu. Rev. Phys. Chem. 2005. https://doi.org/10.1146/annurev.physchem.54.011002.103845.

Wolf, I.; Shapira, A.; Giniger, R.; Miller, Y.; Gerber, R. B.; Cheshnovsky, O. Critical Size for Intracluster Proton Transfer from Water to an Anion. Angew. Chemie - Int. Ed. 2008, 47 (33). https://doi.org/10.1002/anie.200800542.

Bragg, A. E.; Verlet, J. R. R.; Kammrath, A.; Cheshnovsky, O.; Neumark, D. M. Hydrated Electron Dynamics: From Cluster to Bulk. Science . 2004, 306 (5696). https://doi.org/10.1126/science.1103527.

Giniger, R.; Hippler, T.; Ronen, S.; Cheshnovsky, O. Resolution Enhancement in the Magnetic Bottle Photoelectron Spectrometer by Impulse Electron Deceleration. Rev. Sci. Instrum. 2001, 72 (6). https://doi.org/10.1063/1.1367364.

Becker, I.; Cheshnovsky, O.; Introduction, I. Photodetachment Studies of Extended Excited States in I-Xe Clusters. J. Chem. Phys. 1999, 110 (13), 6288–6297.Markovich, G.; Perera, L.; Berkowitz, M. L.; Cheshnovsky, O. The Solvation of Cl-, Br-, and I- in Acetonitrile Clusters: Photoelectron Spectroscopy and Molecular Dynamics Simulations. J. Chem. Phys. 1996, 105 (7) 2675-2685.

Busani, R.; Folkers, M.; Cheshnovsky, O. Direct Observation of Band-Gap Closure in Mercury Clusters. Phys. Rev. Lett. 1998, 81 (18).

Markovich, G.; Pollack, S.; Giniger, R.; ... Photoelectron Spectroscopy of Cl−, Br−, and I− Solvated in Water Clusters. J. Chem. Phys. 1994, 101 (11), 9344-9353

Markovich, G.; Giniger, R.; Levin, M.; Cheshnovsky, O. Photoelectron Spectroscopy of Iodine Anion Solvated in Water Clusters. J. Chem. Phys. 1991, 95 (12).

Cheshnovsky, O.; Taylor, K. J.; Conceicao, J.; Smalley, R. E. Ultraviolet Photoelectron Spectra of Mass-Selected Copper Clusters: Evolution of the 3d Band. Phys. Rev. Lett. 1990, 64 (15), 1785–1788.

Yang, S.; Taylor, K. J.; Craycraft, M. J.; Conceicao, J.; Pettiette, C. L.; Cheshnovsky, O.; Smalley, R. E. UPS of 2-30-Atom Carbon Clusters: Chains and Rings. Chem. Phys. Lett. 1988, 144 (5–6). https://doi.org/10.1016/0009-2614(88)87291-9.

Yang, S. H.; Pettiette, C. L.; Conceicao, J.; Cheshnovsky, O.; Smalley, R. E. Ups of Buckminsterfullerene and Other Large Clusters of Carbon. Chem. Phys. Lett. 1987, 139 (3–4). https://doi.org/10.1016/0009-2614(87)80548-1.

Cheshnovsky, O.; Yang, S. H.; Pettiette, C. L.; Craycraft, M. J.; Liu, Y.; Smalley, R. E. Ultraviolet Photoelectron Spectroscopy of Semiconductor Clusters: Silicon and Germanium. Chem. Phys. Lett. 1987, 138 (2–3). https://doi.org/10.1016/0009-2614(87)80353-6.

Cheshnovsky, O.; Yang, S. H.; Pettiette, C. L.; Craycraft, M. J.; Smalley, R. E. Magnetic Time-of-Flight Photoelectron Spectrometer for Mass-Selected Negative Cluster Ions. Rev. Sci. Instrum. 1987, 58 (11). https://doi.org/10.1063/1.1139475.

Knochenmuss, R.; Cheshnovsky, O.; Leutwyler, S. Proton Transfer Reactions in Neutral Gas-Phase Clusters: 1-Naphthol with H2O, D2O, CH3OH, NH3 and Piperidine. Chem. Phys. Lett. 1988.

Cheshnovsky, O.; Leutwyler, S. Excited-State Proton Transfer in Neutral Microsolvent Clusters: α-Naphthol·(NH3)n. Chem. Phys. Lett. 1985, 121 (1–2). https://doi.org/10.1016/0009-2614(85)87143-8.

 

Patents: 

Cheshnovsky, O.; Tzang, O. Method and System for Microscopy; Cheshnovsky, O.; TZANG, O. Method and System for Microscopy; 2016 Google Patents, 2016

Banin, U.; Yitzchaik, S.; Cheshnovsky, O.; Hanein, Y.; ... Photoelectrical Devices for Stimulating Neurons. US Pat. … 2014.

Abrams, Z.; Hanein, Y.; Hazani, M.; ... Nanotube Network and Method of Fabricating the Same. US Pat. App. 13 … 2013.

bottom of page